Test-10
Marks-15x5

Vector Algebra

Q.1. Find a vector in the direction of vector \(\vec{a} = \hat{i} - 2\hat{j} \) that has magnitude 7 units.

Q.2. Show that the points A, B and C with position vectors, \(\vec{a} = 3\hat{i} - 4\hat{j} - 4\hat{k} \), \(\vec{b} = 2\hat{i} - \hat{j} + \hat{k} \) and \(\vec{c} = \hat{i} - 3\hat{j} - 5\hat{k} \) respectively, form the vertices of a right angled triangle.

Q.3. Find \(|\vec{a} - \vec{b}| \), if two vectors \(\vec{a} \) and \(\vec{b} \) are such that \(|\vec{a}| = 2 \), \(|\vec{b}| = 3 \) and \(\vec{a} \cdot \vec{b} = 4 \).

Q.4. Find the area of the parallelogram whose adjacent sides are determined by the vectors \(\vec{a} = \hat{i} - \hat{j} + 3\hat{k} \) and \(\vec{b} = 2\hat{i} - 7\hat{j} + \hat{k} \).

Q.5. If a unit vector \(\vec{a} \) makes angles \(\frac{\pi}{3} \) with \(\hat{i} \), \(\frac{\pi}{4} \) with \(\hat{j} \) and acute angle \(\theta \) with \(\hat{k} \), then find \(\theta \) and hence the components of \(\vec{a} \).

Q.6. Let \(\vec{a} \), \(\vec{b} \) and \(\vec{c} \) be three vectors such that \(|\vec{a}| = 3 \), \(|\vec{b}| = 4 \), \(|\vec{c}| = 5 \) and each one of them being perpendicular to the sum of other two, Find \(|\vec{a} + \vec{b} + \vec{c}| \).

Q.7. The scalar product of the vector \(\hat{i} + \hat{j} + \hat{k} \) with a unit vector along the sum of vectors \(2\hat{i} + 4\hat{j} - 5\hat{k} \) and \(\lambda \hat{i} + 2\hat{j} + 3\hat{k} \) is equal to one. Find the value of \(\lambda \).

Q.9. If the sum of two unit vectors is a unit vector, Prove that the magnitude of their difference is \(\sqrt{3} \).

Q.10. Show that the points A, B, C with position vectors \(-2\vec{a} + 3\vec{b} + 5\vec{c} \), \(\vec{a} + 2\vec{b} + 3\vec{c} \) and \(7\vec{a} - \vec{c} \) respectively are collinear.

Q.11. If a vector makes \(\alpha \), \(\beta \), \(\gamma \) with OX, OY and OZ respectively, prove that \(\sin^2\alpha + \sin^2\beta + \sin^2\gamma = 2 \).

Q.12. If \(\hat{a} \) and \(\hat{b} \) are unit vectors inclined at an angle \(\theta \), then prove that \(\sin \frac{\theta}{2} = \frac{1}{2} |\hat{a} - \hat{b}| \).

Q.13. If \(\vec{a} + \vec{b} + \vec{c} = 0 \), \(|\vec{a}| = 3 \), \(|\vec{b}| = 5 \), \(|\vec{c}| = 7 \), find the angle between \(\vec{a} \) and \(\vec{b} \).

Q.14. If \(|\vec{a}| = 2 \), \(|\vec{b}| = 5 \) and \(|\vec{a} \times \vec{b}| = 8 \), find \(\vec{a} \cdot \vec{b} \).

Q.15. Determine whether the four points A(-2,0,3), B(1,0,0), C(1,-3,3) and D(4,1,-2) are coplanar.